EXCESS ENTHALPY IN THE METHANOL-WATER SYSTEM AT 278.15, 298.15 AND 323.15 K UNDER PRESSURES OF 0.1, 20 AND 39 MPa. II. EXPERIMENTAL RESULTS AND THEIR ANALYTICAL PRESENTATION

IWONA TOMASZKIEWICZ, STANISŁAW. L. RANDZIO * and PAWEŁ GIERYCZ Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland)

(Received 12 December 1985)

ABSTRACT

Results are presented of flow-calorimetric measurements of excess enthalpy in the methanol-water system at temperatures 278.15, 298.15 and 323.15 K under pressures of 0.1, 20 and 39 MPa. The experimental results are correlated with the use of Redlich-Kister, NRTL and UNIQUAC formulas.

INTRODUCTION

In a preceding paper [1] a description was given of our flow-calorimetric system. Also the experimental procedures were presented which were used to obtain numerical data on excess enthalpy at given compositions at given pressure and temperature range. In this paper results of such measurements for the methanol-water system are presented. The experimental point data obtained from flow calorimetric measurements are correlated with the use of three known formulas (Redlich-Kister, NRTL and UNIQUAC) in order to express the excess enthalpy as a continuous function of composition at particular values of pressure and temperature. When presenting the data the influence of temperature is emphasized.

MATERIALS

Measurements have been performed with the use of carefully purified substances. The methanol samples were supplied by Chemipan ** with a gas chromatographic test of purity (less than 0.05% of impurities). The water

^{*} Author to whom correspondence should be addressed.

^{**} Chemipan, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.

samples were doubly-distilled in a quartz apparatus and then deionized. The liquid specimens were also degassed before use. The densities of the test methanol-water mixtures prepared with the materials mentioned above were almost exactly the same as those given by McGlashan and Williamson [2] and the measured deviations were less than 0.1%.

RESULTS

The results of measurements are presented in Tables 1, 2 and 3. These point data at particular values of composition have been correlated in order to obtain the excess enthalpy as a continuous function of composition at the pressure and temperature under investigation. Three different formulas have been used for the correlation:

Redlich-Kister [3]

$$H^{E} = x_{1}x_{2}\sum_{i=0}^{\infty} A_{i}(x_{1} - x_{2})$$
(1)

NRTL [4]

$$H^{E} = RTx_{1}x_{2} \Big\{ \tau_{21}G_{21}(x_{1} + x_{2}G_{21})^{-1} + \tau_{12}G_{12}(x_{2} + x_{1}G_{12})^{-1} + \alpha \Big[x_{1}\tau_{21}^{2}G_{21}(x_{1} + x_{2}G_{21})^{-2} + x_{2}\tau_{12}^{2}G_{12}(x_{2} + x_{1}G_{12})^{-2} \Big] \Big\}$$
(2)

TABLE 1

Results of flow-calorimetric measurements of excess enthalpy in the methanol-water system under a pressure of 0.1 MPa

T = 278.15	K	T = 298.1	5 K	T = 323.1	5 K
x _{CH₃OH}	H^{E} (J mol ⁻¹)	x _{CH3OH}	H^{E} (J mol ⁻¹)	x _{CH3OH}	H^{E} (J mol ⁻¹)
0.110	718	0.087	510	0.065	330
0.147	839	0.131	662	0.087	404
0.179	913	0.191	782	0.089	402
0.225	962	0.250	852	0.138	540
0.237	96 0	0.338	870	0.180	607
0.328	974	0.357	860	0.202	635
0.358	965	0.440	825	0.214	645
0.368	950	0.525	775	0.236	663
0.467	896	0.605	702	0.247	670
0.470	912	0.672	644	0.344	702
0.510	866	0.789	465	0.350	689
0.511	868			0.440	680
0.600	786			0.446	685
0.602	778			0.535	645
				0.612	596
				0.668	543
				0.717	492
				0.784	404

TABLE 2

T = 278.1	5 K	T = 298.1	5 K	T = 323.1	5 K
хснзон	H^{E} (J mol ⁻¹)	х _{снзон}	$H^{\mathbf{E}}$ (J mol ⁻¹)	х _{сн3} он	H^{E} (J mol ⁻¹)
0.109	730	0.104	582	0.138	551
0.178	934	0.132	677	0.141	552
0.236	982	0.144	701	0.176	616
0.358	983	0.260	863	0.180	625
0.469	918	0.352	873	0.267	701
0.512	885	0.505	799	0.269	699
0.603	791	0.602	718	0.337	716
				0.340	706
				0.435	700
				0.441	703
				0.530	660
				0.538	655
				0.600	613
				0.667	546
				0.668	547
				0.718	500

Results of flow-calorimetric measurements of excess enthalpy in the methanol-water system under a pressure of 20 MPa

where $\tau_{12} = (g_{12} - g_{22})/RT$; $\tau_{21} = (g_{21} - g_{11})/RT$; $G_{12} = \exp(-\alpha\tau_{12})$; $G_{21} = \exp(-\alpha\tau_{21})$. So, effectively, there are three parameters in this formula to be adapted: $(g_{12} - g_{22}), (g_{21} - g_{11})$ and α . UNIQUAC [5] $H^{E} = \frac{-R}{T^{2}} \left[-q_{1}x_{1} \ln(\theta_{1} + \theta_{2}\tau_{21}) - q_{2}x_{2} \ln(\theta_{2} + \theta_{1}\tau_{12}) + x_{1} \ln\frac{\phi_{1}}{x_{1}} + x_{2} \ln\frac{\phi_{2}}{x_{2}} + \frac{Z}{2} \left(q_{1}x_{1} \ln\frac{\theta_{1}}{\phi_{2}} + q_{2}x_{2} \ln\frac{\theta_{2}}{\phi_{2}} + q_{1}x_{1}\frac{\theta_{2}\tau_{21}}{\theta_{1} + \theta_{2}\tau_{21}} (-\ln\tau_{21}) \right)$

$$+q_{2}x_{2}\frac{\theta_{2}\tau_{12}(-\ln\tau_{12})}{\theta_{2}+\theta_{1}\tau_{12}}\bigg]$$
(3)

where

$$\phi_1 = \frac{r_i x_i}{\sum\limits_{k=1}^{2} r_k x_k}$$
$$\theta_i = \frac{q_i x_i}{\sum\limits_{k=1}^{2} q_k x_k}$$
$$\tau_{ij} = \exp\left(-\frac{u_{ij} - u_{ji}}{RT}\right)$$

	TA	B	L	E	3
--	----	---	---	---	---

Results of flow-calorimetric measurements of excess enthalpy in the methanol-water system under a pressure of 39 MPa

T = 278.1	5 K	T = 298.1	5 K	T = 323.1	5 K
х _{сн3он}	H^{E} (J mol ⁻¹)	х _{сн,он}	H^{E} (J mol ⁻¹)	х _{сн3} он	$H^{\mathbf{E}}$ (J mol ⁻¹)
0.110	741	0.098	564	0.081	398
0.177	935	0.191	795	0.185	632
0.226	991	0.252	869	0.235	694
0.366	998	0.339	892	0.236	690
0.470	945	0.440	849	0.264	713
0.511	898	0.520	78 7	0.342	730
0.602	818	0.604	726	0.367	738
				0.434	713
				0.448	704
				0.614	622

z = 10, $q_1 = 1.432$, $q_2 = 1.400$, $r_1 = 1.4311$, $r_2 = 0.920$ [6], where subscript 1 is for methanol, subscript 2 is for water. Thus in this equation there are two parameters to be adapted: $(u_{12} - u_{22})$ and $(u_{21} - u_{12})$.

The equations given above have been used in computer programs in which the sum of square deviations between the experimental values and the calculated values was minimized by the least-squares fitting procedure. The values of parameters obtained from the least square fitting procedure with the use of the particular formulas are listed in Table 4. Also given are mean square deviations between the experimental values and those calculated from formulas (1-3). The deviations were calculated from the following formula

$$SQ = \left[(n-k)^{-1} \sum_{i=1}^{n} \left(H_{iexp}^{E} - H_{ical}^{E} \right)^{2} \right]^{0.5}$$
(4)

where *n* is the number of experimental points and *k* is the number of parameters. It can be seen that the best presentation of experimental data is obtained with the use of NRTL formula. In Figs. 1-3 are presented both the

three and and for th	four parameter le UNIQUAC 1	s, respectively formula in the	/ (the parame e following c	eter values for th order: $(u_{12} - u_{22})$	e NRTL formula), $(u_{21} - u_{11})$, whe	are given in tre 1 means 1	the following nethanol and	g order: (g_{12})	$-g_{22}$), $(g_{21} - g_{11})$, iter; SQ is the mea	ъъ
square de	viation calculate	ed from form	ula (4))							1
T (K)	p (MPa)	Coefficient	values (J mol	-1)		Mean sq.	dev. – SQ (J	mol ⁻¹)		1
		R-K-3	R-K-4	NRTL	UNIQUAC	R-K-3	R-K-4	NRTL	UNIQUAC	
278.15	0.1	- 3439	- 3502	23612	- 2595				norman menandra da	t
		1440	1545	7930	1620	15	7	2	50	
		-4140	- 2491	0.256						
			2418							
278.15	20	- 3499	- 3566	23390	- 2607					
		1513	1645	5587	1615	17	7	1	25	
		- 4483	- 2510	0.260						
			2422							
278.15	39	- 3597	- 3656	15225	- 2645					
		1504	1615	17045	2005	15	7	2.7	28	
		- 4483	-2537	0.447						
			2346							
298.15	0.1	- 3102	-3170	27600	- 3373					
		1755	1336	7361	- 3206	18	Ś	0.4	2	
	n.	- 2551	- 2003	0.254						

Parameter values for four equations used for correlation of experimental data, R-K-3 and R-K-4 are symbols for Redlich-Kister formula with

TABLE 4

		9				6				2				-				20		
		0.2				S				6.0				0.7				0.7		
		4				7				4				4				6		
		80				15				13				11				10		
	- 2754	- 61335			- 2632	-51480			- 3808	- 2000			- 4018	- 1703			- 2356	954		
	23988	6830	0.287		59929	5093	0.345		20092	8307	0.306		16443	8625	0.324		6487	7089	0.320	
1385	-3210	1381	- 1965	1448	- 3241	1414		1351	- 2640	826	-1419	1410	- 2694	943	- 1409	1310	- 2769	606	- 1355	1434
	- 3156	1285	- 3272		- 3196	1770	2443		- 2537	1194	- 2176		- 2647	1163	- 2041		- 2705	827	- 2651	
	20				39				0.1				20				39			
	298.15				298.15				323.15				323.15				323.15			

Fig. 3. Effect of temperature on the excess enthalpy in the methanol-water system under a formula.

experimental values (points) and values calculated with the use of NRTL formula.

DISCUSSION

From Figs. 1-3 and the numerical presentation of the results in Tables 1-3 one can see that the absolute values of the excess enthalpy in the pressure range under investigation decrease with temperature. At the same time the extremum is shifted towards the higher concentrations of methanol. This is connected with the fact that the temperature increase causes a change in the balance between the forces stabilizing and destabilizing the structure of the solution, the latter ones increase with increasing kinetic energy of molecules. One can also note that the absolute values of excess enthalpy at the particular temperatures are higher under higher pressures. This effect is

also connected with the balance mentioned above; the pressure increases the forces stabilizing the structure of the solution. A more detailed analysis of the effect of pressure on the excess enthalpy in the system methanol-water will be presented in a subsequent paper.

ACKNOWLEDGEMENT

This work has been carried out within the Polish Academy of Sciences basic research program 03.10.1.7.2.

REFERENCES

- 1 S.L. Randzio and I. Tomaszkiewicz, Thermochim. Acta, 103 (1986) 275.
- 2 M.L. McGlashan and A.G. Williamson, J. Chem. Eng. Data, 21 (1976) 196.
- 3 D. Redlich and A.T. Kister, Ind. Eng. Chem., 40 (1948) 345.
- 4 D.S. Abrams and I.M. Prausnitz, AIChE J., 21 (1975) 116.
- 5 H. Renon and I.M. Prausnitz, AIChE J., 14 (1968) 135.
- 6 A. Fredenslund, J. Gmehling and P. Rasmusse, Vapor-Liquid Equilibria Using UN-IQUAC Group Contribution Method, Elsevier, Amsterdam, 1977.